
1

by SNIA SSSI Member:

Jim Handy
Objective Analysis
“The SSD Guy”

SSSI TECH NOTES

www.snia.org

How Controllers
Maximize SSD Life

January 2013

About the Solid State Storage Initiative

The SNIA Solid State Storage Initiative (SSSI) fosters the growth and success
of the market for solid state storage in both enterprise and client environ-
ments. Members of the SSSI work together to promote the development of
technical standards and tools, educate the IT communities about solid state
storage, perform market outreach that highlights the virtues of solid state
storage, and collaborate with other industry associations on solid state stor-
age technical work.

SSSI member companies come from a wide variety of segments in the SSD
industry www.snia.org/forums/sssi/about/members.

1

How Controllers
Maximize SSD Life

by SNIA SSSI Member:

Jim Handy
“The SSD Guy”, Objective Analysis

Table of Contents

Introduction 2

How Controllers Maximize SSD Life 2

Better Wear Leveling 3

External Data Buffering 6

Improved ECC 7

Other Error Management 9

Reduced Write Amplification 10

Over Provisioning 11

Feedback on Block Wear 13

Internal NAND Management 14

2

Introduction
This booklet contains a collection of posts from Jim Handy’s SSD Guy blog
www.TheSSDGuy.com which explores the various techniques designers
use to increase SSD life.

How Controllers Maximize SSD Life
How do controllers maximize the life of an SSD? After all, MLC flash has a
lifetime of only 10,000 erase/write cycles or fewer and that is a very small
number compared to the write traffic an SSD is expected to see in a high-
workload environment, especially in the enterprise. Still, MLC is becoming
the norm in the enterprise.

How Do They Do That?

This is where SSD architects really earn their pay. There are eight basic tech-
niques that The SSD Guy knows of to extend SSD life beyond the wear that
the flash alone would provide:

• Wear Leveling
• External Data Buffering
• Improved ECC
• Other Error Management
• Reduced Write Amplification
• Over Provisioning
• Feedback on Block Wear
• Internal NAND Management

What is important to consider is that the right mix of these techniques
allows an SSD to have significantly better wear than the internal NAND’s
specifications would support.

Better Wear Leveling
First we will explore how the right wear leveling algorithm can help a con-
troller maximize the life of an SSD.

3

Wear leveling is a fact of life with NAND flash – blocks start to suffer bit
failures after a certain number of erase/write cycles (usually specified from
the thousands to the hundreds of thousands) and it is only natural that soft-
ware will attempt to over-write some blocks more than others. In order to
prevent this from causing failures, all of today’s SSD, USB flash drive, and flash
card controllers incorporate some sort of wear leveling.

This is a simple re-mapping of the contents of the flash chips. A more graphi-
cal explanation is given in any of Objective Analysis’ SSD reports.

When the software attempts to write to a certain block, it is automatically
forced to write somewhere else. The next write is likely to be mapped some-
where yet again. This is done in a way that is completely invisible to the rest
of the world, and results in all of the blocks in the flash chip receiving roughly
the same amount of wear.

Wear leveling algorithms are not all the same, though, and some work better
than do others.

There are two fundamental categories of wear leveling: Static and Dynamic.
With dynamic wear leveling only two kinds of blocks participate in the wear
leveling algorithm: those that undergo change, and those that are unused.
Blocks of data that don’t change (“Static” blocks) are left alone by a dynamic
write leveling algorithm.

Static wear leveling manages write leveling across all of the flash in the system
– the changed blocks, the unused blocks, and the static blocks. This means
that a static block that contains valid data but that is never being written
to will still be moved around within the flash in order to allow all blocks to
receive the same amount of wear. It’s easy to understand why this would
help, since those blocks would otherwise be unavailable to the wear leveling
algorithm. On the other hand, if you’re trying to minimize write/erase cycles,
it’s unintuitive that this approach is the better of the two.

Underneath these two fundamental wear leveling algorithms lie several other
strategies that The SSD Guy won’t go into here. These determine how much
data will be moved, where it will be moved, and how data fragments can be
consolidated to make one full block out of a number of partial blocks.

4

Controller designers have to walk a tightrope when it comes to wear algo-
rithms since a very aggressive wear leveling algorithm may create an excessive
number of unnecessary additional writes. Meanwhile, the wear algorithm has
to interact well with other operations within the drive (like garbage collec-
tion) or it might also create undue block wear.

This is all very tricky!

The selection of these algorithms determines not only how much wear each
block will receive, but also how quickly the SSD will perform in demanding
applications. Each SSD architect has a unique philosophy about how these
algorithms should be managed. The best algorithm depends on a number of
variables including NAND type, workload, speed requirements, and so on.

Intel has shared some graphics that help illustrate how wear leveling algo-
rithms differ. The first is a chart of an SSD with a very basic wear leveling
algorithm called “Regioned Leveling.” The X-axis represents different flash
regions. The Y-axis indicates the number of erase/write cycles each has un-
dergone. A red dot represents the activity in and individual block. Clearly
some blocks, even blocks within the same region, undergo significantly more
write activity than do others, and these blocks should be the first to fail.

Figure 1 - Erratic wear of a basic wear leveling algorithm.

 Source: Intel Corp., Used with permission.

5

The second graphic contains similar data for an Intel SSD, but in this chart the
data has been sorted from lowest to highest because otherwise the differ-
ence between blocks might not clearly show up in the chart. The Intel SSD
used in this example uses a much more balanced wear leveling algorithm that
will wear each block at essentially the same rate. According to Intel, the first
SSD exhibited some cases in which peak wear was three times the average.
The second had only a 4% difference between the blocks with the maximum
and minimum wear.

Figure 2 - Wear leveling in an Intel SSD

 Source: Intel Corp., Used with permission.

What impact does this have on SSD longevity? Well, if the wear leveling al-
gorithm can both minimize erase/write cycles and truly even out wear across
the entire SSD, then it will naturally coax the longest life out of the blocks
before any of them starts to wear.

External Data Buffering
Since NAND flash is weakened by erase/write cycles then it would make
sense to try to reduce those cycles to prolong the life of an SSD right? That’s
what external data buffers are designed to do.

6

There are many ways to use RAM (either a RAM internal to the SSD control-
ler chip or a discrete DRAM chip on the SSD’s printed circuit card) to stage
data in a way that will reduce erase/write cycles.

One is to perform a function called “Write Coalescing.” This involves gather-
ing several short writes to adjacent SSD sectors to turn them into a single
long write from the buffer into the NAND flash. One large write is less tax-
ing to the chip than are several small writes. It’s also a lot faster.

Here’s an example: In an SSD without a write buffer a number of short writes
to the same general area in the drive may not all occur at the same time. An
early write is likely to already be committed to the flash before a later one
is received by the SSD. When the later write is received, the flash block that
contains both sectors may need to be reassigned to another block in order
to perform the operation, leading to an additional erase/write cycle.

Write coalescing is not the only way a RAM buffer can be used to reduce
write traffic to the flash in an SSD. Another approach involves buffering
several successive writes to the same sector, without actually writing to the
flash until several such writes have been performed. Although the system
may believe that it is repeatedly overwriting the same NAND sector, in truth
the overwritten sector is in RAM until that RAM is needed for some other
task. Several hundred writes to a single sector may turn into a single write to
NAND. This means that in some cases the endurance of the NAND may be
increased by a couple of orders of magnitude, which is a pretty good return
for a couple of dollars’ worth of RAM.

RAM is also used to assure that writes occur in full page lengths, since this
is the away that NAND most efficiently performs a write. By matching the
length of a NAND write to the chip’s page length the buffer helps to reduce
write traffic. Different NAND chips have different page lengths (generally
1-4kB) so the controller has to be informed of the page length of the exact
NAND chips used in the SSD.

Any of these approaches creates a risk that data in RAM will be lost during a
power failure. The work-around for this is to provide internal energy storage
that can keep the SSD alive long enough to write the RAM’s contents into the
NAND for an orderly shut-down. The power for this process is commonly
provided one of three ways – it can be from a:

7

1. Battery
2. Super Capacitor
3. Bank of Tantalum Capacitors

We won’t join the debate about which of these is best.

Still, it’s clear that adding a RAM as temporary storage can do a lot to length-
en flash lifetime well beyond the limit of its endurance specifications.

Improved ECC
Error correction codecs (ECC) can have a very big impact on the longevity of
an SSD, although few understand how such a standard item can make much
difference to an SSD’s life. The SSD Guy will try to explain it in relatively
simple terms here.

All NAND flash requires ECC to correct random bit errors (“soft” errors.)
This is because the inside of a NAND chip is very noisy and the signal levels
of bits passed through a NAND string are very weak. One of the ways that
NAND has been able to become the cheapest of all memories is by requiring
error correction external to the chip.

This same error correction also helps to correct bit errors due to wear.
Wear can cause bits to become stuck in one state or the other (a “hard”
error), and it can increase the frequency of soft errors.

Although it is not widely understood, flash endurance is the measure of the
number of erase/write cycles a flash block can withstand before hard errors
might occur. Most often these failures are individual bit failures – it is rare
for the entire block to fail. With a high enough number of erase/writes the
soft error rate increases as well due to a number of mechanisms that I won’t
go into here. If ECC can be used to correct both these hard errors and an
increase in soft errors then it can help lengthen the life of a block beyond its
specified endurance.

Here’s an example: Let’s say that an unworn NAND chip has enough soft er-
rors to require 8 bits of ECC – that is, every page read could have as many as
8 bits that have been randomly corrupted (usually from on-chip noise.) If the

8

ECC that is used with this chip can correct 12 bit errors then a page would
have to have 8 soft errors plus another 5 wear-related errors to go beyond
the ECC’s capability to correct the data.

Now the first of those 5 failures is guaranteed by the flash manufacturers to
occur sometime after the endurance specification: No bits will fail until there
have been 10,000 (or 5,000, or 3,000…) erase/write cycles. Specifications
are not sophisticated enough to predict when the next bit will fail, but there
may be several thousand more cycles before that occurs. This implies that
it will take significantly more than the specified endurance before a page be-
comes so corrupt that it needs to be decommissioned. This means that the
error-corrected endurance of the block could be many times the specified
endurance, depending on the number of excess errors the ECC is designed
to correct.

This all comes at a price. More sophisticated ECC requires more processing
power in the controller and may be slower than less sophisticated algorithms.
Also, the number of errors that can be corrected can depend upon how
large a segment of memory is being corrected. A controller with elaborate
ECC capabilities is likely to use more compute resources and more internal
RAM than would one with simpler ECC. These enhancements will make the
controller more expensive.

ECC algorithms are their own special other-worldly state of mathematics,
and although The SSD Guy is pretty comfortable with math, but I don’t even
try to understand the difference between the more basic Reed-Solomon
coding and LDPC. When someone talks to me about the Shannon Limit (the
maximum number of bits that can be corrected) my eyes glaze over. Suffice it
to say that I am awestruck by the intelligence of the folks who have mastered
ECC, and their ability to extract more life out of a flash block than any mere
mortal would think possible.

Just remember that more bits of error correction leads to a longer usable life
for a flash block before it needs to be decommissioned.

Other Error Management
There are more advanced means than simple error correction to help re-

9

move bit errors in NAND flash and those will be the subject of this section.
The general term for this approach is “DSP” although it seems to have very
little to do with the kind of DSP algorithm used to perform filtering or build
modem chips.

While ECC corrects errors without knowing how they got there, DSP helps
to correct any of the more predictable errors that are caused by internal er-
ror mechanisms that are inherent to the design of the chip. A prime example
of such an error would be adjacent cell disturb.

Here’s a brief explanation of adjacent cell disturb: Since each bit cell in a flash
chip is like one of an array of tiny capacitors all manufactured on the same
die, there can be cross coupling between adjacent cells. An adjacent cell may
bleed charge off of a neighboring cell. During reads and writes the energy
passing through the adjacent cell may push a neighboring cell’s bit just past its
threshold – during a read the current drawn off the adjacent cell may draw
some charge off a neighboring cell, and during a write the high fields in the
adjacent cell may increase the charge of its neighbor.

The DSP engine knows which bits in a chip are adjacent to which other bits,
and actually changes the data written into the flash into “symbols” (a term
from communications technology). The symbols are chosen to make the data
less sensitive to errors stemming from the effects of adjacent cell disturb.

There is a science surrounding the selection of the right symbols, since they
impact other aspects of the SSD including write speed.

When reading the flash the symbols are re-mapped into data, a process that
corrects predictable errors before they are processed through the ECC al-
gorithm.

DSP corrects the more predictable errors leaving the less predictable errors
for the ECC algorithm to clean up.

Since cleaner data is passed to ECC for correction, DSP effectively adds more
bits of error correction to the ECC. As we saw in the ECC post, adding
bits of error correction can extend the endurance of the flash chip, so in an
indirect way, DSP not only corrects errors, but it also extends the life of the
flash in an SSD.

10

DSP is not all that widely used today, but a growing number of future SSD
controllers are likely to include this approach.

Reduced Write Amplification

Write amplification plays a critical role in maximizing an SSD’s usable life. The
lower the write amplification, the longer the SSD will last. SSD architects pay
special attention to this aspect of controller design.

Unlike the other factors described in this series this is not a technique that
extends flash life beyond the 10,000 erase/write cycles that one would nor-
mally expect to result in a failure, but it is very important to SSD longevity.

An SSD that is trying to manage its free blocks will need, at times, to move
data from two sparsely-populated blocks to another block so that those
sparsely-populated blocks can be erased. Since the host system didn’t ask the
SSD to perform this write, it results in a write that is over and above what
the host system requested, so the SSD undergoes more writes than the host
system intended; that’s write amplification.

If the number of NAND writes within the SSD matched the number of host
system write requests then the Write Amplification (or Write Amplification
Factor – WAF) would be 1.0. If the average number of writes to flash were
twice the number of host system write requests then the Write Amplifica-
tion would be 2.0.

If you were to write a piece of system software that measured SSD writes,
this measurement would fall short of the actual number of times the flash
chips were being written to because of Write Amplification.

There are many ways to reduce Write Amplification. Some SSDs write data
to the SSD in a log structure – the data is written into sequential NAND ad-
dresses and housekeeping is performed during idle times. This does reduce
write amplification, but data management gets complicated as the SSD fills.

SandForce’s approach is to compress the data going into the SSD. If the data
is compressed to 1/2 its normal size, then half the system writes actually
make it into the SSD’s NAND chips. This allows SandForce to boast that

11

its write amplification is less than 1.0, a figure that is not intuitive unless you
understand the approach the company uses.

In brief, an SSD that has been designed to reduce write amplification will
reduce the number of times the NAND flash sees write cycles, thus taking
the best advantage of the limited number of erase/writes that its NAND flash
chips can withstand before experiencing bit errors.

Over Provisioning
Over provisioning is one of the most common ways that SSD designers can
help assure that an SSD has a longer life than the flash’s endurance rating
would support. If an SSD contains more flash than is presented at its inter-
face, the controller can manage wear across a larger number of blocks while
at the same time accelerating disk performance by moving slow operations
like block erases out of the way of the SSD’s key functions.

Many people like to compare wear leveling to rotating a car’s tires. In this
vein, think of over provisioning as having a bunch of spare tires (rather than
just one) in the trunk of your car. The more tires you have, the farther you
can drive before having to buy a new set of tires, although at any one time
you are never using more than four tires. On the other hand, this pushes up
the cost of a tire change a good bit.

Over provisioning also helps reduce write amplification. When an SSD gets
full the garbage collection algorithm works to consolidate partial blocks to
provide more free space. An SSD with a lot of spare blocks doesn’t need to
go through this process as frequently as an SSD with few spare blocks.

(A related, but somewhat different way that blocks are freed is through the
Trim command. The Trim command allows the operating system to tell the
SSD which sectors are no longer useful. This allows the SSD to erase unused
blocks well in advance of their use, reducing the likelihood that the SSD will
fill up.)

How much does over provisioning help? Based on inputs from a few compa-
nies The SSD Guy concludes that, for standard MLC NAND flash, 45% over
provisioning will give you about twice the drive life of 20% over provisioning,

12

and 75% over provisioning will extend the disk’s life to three times. A full
100% over provisioning won’t get you quite as far as four times the drive life,
but it comes close. Increases in over provisioning show a trend of diminish-
ing returns approaching zero at around 250% over provisioning (and about 6
times the life of that 20% over provisioned SSD).

Many contend that 7% over provisioning is a standard for client SSDs. This
level would provide about 1/3rd of the lifetime of a 20% over provisioned
SSD.

Something very weird happens with compression, which is used in SandForce
controllers. These controllers compress the data as it is being written into
the NAND flash. This means that the amount of over provisioning is a func-
tion of how compressible the data is. Highly-compressible data will leave a
lot of flash unused for data storage, so the SSD will have a very large amount
of over provisioning, extending its wear significantly. Incompressible data
(usually data that has already been compressed, like MP3 files, JPEG photos,
or video files) will consume most of the flash in the SSD leaving very little
for over provisioning. SSDs storing incompressible data will wear out after
fewer disk writes. Quite fortunately, applications with high write workloads
do not usually manage these file types.

A note about the terminology: Some folks spell this as a single word –
Overprovisioning – and even The SSD Guy is inconsistent about which way
to write it. Since it’s a term that began its days decades ago with RAID you
would expect some standard to already be in place, but this seems not to be
the case. I suggest picking one that feels right to you and overlooking the
inconsistency across the industry.

Feedback on Block Wear

One way that SSD controllers maximize the life of an SSD is to use feedback
on the life of flash blocks to determine how wear has impacted them. Al-
though this used to be very uncommon, it is now being incorporated into a
number of controllers.

13

Here’s what this is all about: Everybody knows that endurance specifications
tell how much life there is in a block, right? For SLC it is typically 100,000
erase/write cycles, and for MLC it can be as high as 10,000 cycles (for older
processes) but goes down to 5,000 or even 3,000 for newer processes. TLC
endurance can be in the hundreds of cycles. Now the question is: “What
happens after that?”

In most cases individual bits start to stick after that. How long after that,
though, is not fully specified. In a SNIA white paper that The SSD Guy helped
to write (NAND Flash Storage for the Enterprise - an In-Depth Look at Reliability),
Fusion-io shared some chip characterization the company performed that
showed SLC flash lasting sometimes over 4 million cycles before bits started
to stick. (See Figure 2 of this white paper, which shows negligible bit errors
below 2 million cycles for SLC NAND.)

If NAND can be programmed and erased so very many times, then why don’t
chip makers specify the greater number? Wouldn’t this give them a com-
petitive advantage? In fact, for the vast majority of their market – consumer
electronics – a better wear specification would not help sell flash chips, and it
would be very costly to specify it accurately. Endurance tests are very time
consuming and unfortunately they destroy the chip they are testing. Add to
this the fact that endurance can vary by chips within a single wafer, and the
result is that you can’t perform lot characterization efficiently, and even if you
could, it would create an inventory situation as the chip maker delayed ship-
ping a production batch of chips until the wear testing had been completed.

The answer is to set the bar low enough that every part ever made will pass.
In the case of SLC flash this bar is set at 100,000 cycles. For MLC it is set
much lower, and for TLC it can be an order of magnitude lower than for MLC.

So, how can this bit of information be used to extend SSD life?

Let’s say that your controller can figure out how many erase/write cycles
every flash block in the SSD can withstand. Then it can manage the wear
leveling algorithm to put more wear onto the hardy blocks and less onto the
weaker blocks. More importantly, though, the controller will not simply give
up and say: “100,000 erase writes on this block – time to shut it off!” Instead
it will take the block right to the point where the bit errors are nearly the
maximum number the error correction algorithm can correct.

14

Naturally, this will extend the life of each NAND block to its absolute limit,
most likely multiplying the life of the SSD to many times that of an SSD with-
out this feedback.

It’s not a complicated idea, but one that didn’t occur to early SSD designers.
It’s the kind of simple, yet highly-effective approach that I would expect to
come into universal use over time

Figure 3 illustrates the results when one SSD maker – SMART Storage Sys-
tems – combines this technique with some of the other approaches men-
tioned in this brochure to extend the life of their SSDs’ NAND chips.

Figure 3. NAND flash wear based on common algorithms (top) and on more

 sophisticated algorithms based on sensing actual flash wear.

Images courtesy of SMART Storage Systems. Used with permission.

This represents NAND flash blocks after five years of heavy write loads. The
red blocks have failed and are no longer used by the SSD. Yellow blocks are
close to failure. Green blocks have plenty of remaining life. Clearly the lower

15

model will give far longer SSD life than the upper model, which is based on an
assumption of 10,000 erase/write cycles.

Internal NAND Management
Given that you have used all those other forms of improving SSD wear that
we have discussed so far, but you still don’t find that this is enough, what do
you do next? Well a few SSD controllers go one step further and manage
some of the inner workings of the NAND flash chip itself.

If that sounds like a significant undertaking to you, then you clearly under-
stand why so very few controllers take this approach. The information
used to perform this function is not generally available – it takes a special
relationship with the NAND flash supplier – and you can’t develop this
relationship unless the NAND supplier is certain that you won’t go sharing
its secrets with its competition. This means that the SSD controller is dedi-
cated to a single brand of NAND, and it means that the SSD maker can’t
shop around among NAND suppliers for the best price. Furthermore, the
NAND supplier won’t share this information unless it believes that there
is some compelling reason to work the SSD manufacturer. Since there are
hundreds of SSD makers it’s really difficult to get these companies to pay
attention to you!

The SSD manufacturers that have this kind of relationship with their flash
suppliers are very rare and very special.

Let’s say that you’re an SSD maker that’s in the happy position where a
NAND supplier is willing to disclose such information to you. What will
you learn? You will be told how to manage a lot of variables that can be
controlled by changing internal settings on the NAND flash, and of param-
eters that influence bit errors:

• Thresholds between levels in MLC
• Programming times and algorithms
• Physical placement relationships between adjacent cells
• Means of de-trapping electrons trapped in the tunnel oxide

16

There are more than these, but these are the ones The SSD Guy knows
about. These are the kinds of things that can be controlled if you understand
how to access the special internal test modes that are implanted within every
flash chip sold today.

To give you an idea of how this works, let’s look at a single parameter: MLC
level sensing.

When an MLC flash is programmed it places two bits on a cell by charging
the cell to one of four levels:

• Uncharged
• 1/3 charged
• 2/3 charged

• Fully charged

Certain inevitable issues can cause these levels to veer off-center. Trapped
electrons in the tunnel oxide can make the floating gate appear to hold a
larger charge than the programming algorithm actually placed on it. Thermal
or other influences can drain electrons off the cell to reduce the charge.
Adjacent cell reads and writes may add or remove electrons from the float-
ing gate.

A controller that understands these phenomena can adjust the sensing
thresholds within the NAND chip to help reduce the chance that a bit will
be misinterpreted. If a cell is supposed to be 2/3 charged, but it looks like it’s
1/2 charged, will it be read as 1/3 charged or as 2/3 charged? If the thresh-
olds are managed by the SSD controller to compensate for other factors the
controller can reduce the impact of this source of bit errors.

Clearly this is a pretty extreme way to squeeze the last bit of life out of
NAND flash. It is used to push the technology far beyond its specified wear,
but the companies that use it are very successful in achieving flash life well
beyond that of controllers that don’t use this approach.

The Solid State Storage Initiative

About SNIA
The Storage Networking Industry Association (SNIA) is a not-for-profit
global organization made up of some 400-member companies and 7,000 in-
dividuals spanning virtually the entire storage industry. SNIA’s mission is to
lead the storage industry worldwide in developing and promoting standards,
technologies, and educational services to empower organizations in the man-
agement of information. To this end, SNIA is uniquely committed to delivering
standards, education, and services that will propel open storage networking
solutions into the broader market. For additional information, visit the SNIA
web site at www.snia.org.

SSSI TECH NOTES

A NAND Flash cell has a well-
understood lifespan.

Learn about the techniques used
by SSD controllers to maximize
SSD life.

Wear leveling is important, but
there’s much, much more in-
volved.

About this Book

© Copyright 2013 Storage Networking Industry Association. All Rights Reserved.

Storage Networking Industry Association

425 Market Street, Suite 1020
San Francisco, CA 94105
Phone: 415-402-0006
Fax: 415-402-0009

About the Author

Jim Handy, Director at
Objective Analysis is
the author of “The SSD
Guy” blog and is an ac-
tive member of the SSSI.

www.objective-analysis.com
www.thessdguy.com

www.snia.org
www.snia.org/forums/sssi
www.sniasssiblog.org

